ThreeBond TSCHNIERLNS//5

ThreeBond Technical News Issued July 1, 2020 6

Technical Trends in Silicone-Based Conductive Adhesives for Crystal Devices and ThreeBond 3304J, a Conductive Adhesive Suitable for Minute-Amount Application

Introduction

ThreeBond develops and sells conductive adhesives that have been widely adopted for a range of market applications. They are often used for crystal devices, particularly crystal oscillators.

The electrical and electronics market is currently seeing remarkable technical innovations, and use of mobile devices such as smartphones, tablets and smartwatches is spreading rapidly. As mobile devices become smaller and capable of increased performance, the size and thickness of the crystal devices must also reduce. Today's devices are between half and a third the size of those from ten years ago. As of March, 2020 the smallest crystal oscillator in the world is 1.0 mm \times 0.8 mm and further miniaturization is expected in future (according to ThreeBond's research).

This article introduces ThreeBond 3304J, which is suitable for use with the world's smallest crystal oscillators and compares it to examples of previous products released by ThreeBond for use with crystal oscillators.

Hereafter, ThreeBond is abbreviated as TB.

Table of Contents						
Introduction1	4-1. Features4					
1. Market Trends and Required	4-2. Characteristics4					
Characteristics2	4-3. Application Performance5					
2. Conductive Adhesive Lineup2	5. Future Development Trends7					
3. Product Characteristic Comparison3	Closing8					
4. TB3304J4						

1. Market Trends and Required Characteristics

The field of crystal devices is undergoing a significant shift towards smaller and thinner devices. Surface mounted device (hereafter referred to as "SMD") crystal oscillators for mobile devices can be taken as an example. In 2010, the smallest sizes were 2.5 mm \times 2.0 mm or 2.0 mm \times 1.6 mm. Over the following ten years, the smallest size decreased to 1.0 mm \times 0.8 mm, less than half the size. Development work is also being carried on reducing sizes to 0.8 mm \times 0.6 mm Although crystal devices are becoming smaller and thinner, their functionality has been maintained and performance is improving.

Fig. 1 SMD Crystal Oscillator Structure

As crystal devices become smaller, the size (application diameter) of conductive adhesives will also inevitably be reduced. In the case of 2.5 mm \times 2.0 mm or 2.0 mm \times 1.6 mm SMD crystal oscillators, the application diameter of the conductive adhesive is about Ø200 to 250 µm. If the size is reduced to 1.0 mm \times 0.8 mm, the application diameter is about Ø100 to 150 µm (Table 1). Conductive adhesives used in such fields require various characteristics. Some examples of required characteristics are shown in Table 2.

2. Conductive Adhesive Lineup

Examples of previously-released products for SMD crystal devices are listed in Table 3. Because many SMDs only hold the crystal piece on one side, silicone resin with excellent stress relaxation is used as a binder. Another reason for using silicone resin is that there is little change in its characteristics even at the high temperatures (265°C or higher) produced during reflow soldering. The example products have been broadly classified into generations based on their proportion and process design. This classification equates to the size of supported SMD crystal device and is carried out independently by ThreeBond.

The binder design is the element that underwent the largest improvement between the first and second generations. By limiting the size of the components contained in the binder that provide adhesion, the size of supported SMD crystal devices was reduced. The biggest improvement from the second to the third generation is the filler design. Limiting the size of the filler (particularly coarse powder), allows

Crystal oscillator size	mm	2.5 × 2.0	2.0 × 1.6	1.0 × 0.8
Conductive adhesive application diameter	μm	Ø200	to 250	Ø100 to 150

Table 1 SMD Crystal Oscillator Size and Conductive Adhesive Application Diameter

Table 2	Required	Characteristics	for Conductive	Adhesives f	or SMD Crystal	Oscillators
---------	----------	-----------------	----------------	-------------	----------------	-------------

Classification	Item	Required characteristic	
(1) Discharge performance		The nozzle does not clog during use	
Workability	(2) Application performance	Optimum application diameter	
	(3) Shape retention	Shape is maintained after application	
	(4) Adhesion	Does not peel off due to impact when dropped	
	(5) Conductivity	Low CI (crystal impedance) value is maintained	
Characteristic	(6) Heat resistance	Little change in characteristics during reflow soldering	
	(7) Low outgassing	Low levels of outgassing from cured materials	

application with nozzles with smaller inner diameters than before, enabling support for the miniaturization of SMD crystal devices. In this case, filler is a general term for conductive fillers and other functional fillers.

3. Product Characteristic Comparison

A list of characteristic values of example products from each generation is shown in Table 4. In order to respond to the miniaturization of SMD crystal devices, the particle diameter of the components that make up the conductive adhesive is also getting smaller. As a result, the chip bond strength (bond strength) tends to decrease up to the third generation.

In general, when comparing adhesives containing large filler particles and small filler particles, the bond strength tends to decrease as the filler particle size decreases. This is because the ratio of the binder component at the adhesive interface with the adherend is higher when the filler contains particles with a large diameter.

Figure 2 shows a model of a spherical filler. Focusing on the binder component at the adhesive interface, comparing

the diameter of the filler particles shows that the ratio of the binder component at the adhesive interface with the adherend is higher when the filler contains particles with a large diameter, resulting in greater bond strength. On the other hand, fillers containing particles with smaller diameters have less of the binding component at the adhesion interface. This reduces contact between the binder and the adhered, thereby reducing the bond strength.

Fig. 2 Effect of Filler Size on Bond Strength

Classification	First generation	Second generation	Third generation
Product	TB3303M TB3303N TB3303R	TB3303G (NEO) TB3303Y TB3304	TB3303Z TB3304C TB3304D
Binder resin	Silicone-based	Silicone-based	Silicone-based
Minimum supported crystal oscillator size	imum supported crystal 5.0mm × 3.2mm, 3.2mm × 2.5mm, 2.5mm × 2.0mm		2.5mm × 2.0mm, 2.0mm × 1.6mm
Features/improvements from previous generation	Good adhesion to gold- plated electrodes	Reduced size of adhesion- imparting component in binder	Reduced filler size (coarse powder)

Table 3 Examples from Product Lineup

Table 4 List of Characteristic Values of Example Products

Test item	Unit	TB3303M	TB3303G (NEO)	TB3304D	TB3303Z	Testing method	Remark(s)
Viscosity	Pa•s	40	40	50	70	3TS-2F00-007	Shear velocity: 1.92 s ⁻¹
Structural viscosity ratio	_	2.8	2.8	3.2	3.1	3TS-2F10-004	
Volume resistivity	10 ⁻⁶ Ω•m	1.9	2.5	1.3	0.6	3TS-5100-002	
Chip bond strength	MPa	3.2	3.0	2.4	1.4	3TS-4180-002	2Ø gold-plated chip/ gold-plated plate
Standard curing conditions	_	180°C × 60min	180°C × 60min	180°C × 60min	210°C × 60min	_	
Recommended nozzle inner diameter	μm	210	210	140	130	_	

Curing conditions

Curing equipment: Hot air drying oven

Curing atmosphere: Air

*Physical properties listed above are representative values.

4. TB3304J

4-1. Features

TB3304J was released in February 2020. It is a siliconebased conductive adhesive with the following features.

- (1) High precision minute-amount application
- (2) High structural viscosity ratio
- (3) High bond strength
- (4) High heat resistance

In order to respond to increased miniaturization of SMD crystal oscillators, improvements to various physical properties such as bond strength are necessary in addition to allowing minute-amount application. For this reason, many elements of the binder and filler design have been improved during the development of TB3304J. In the product lineup, it is classified as part of the new fourth generation.

4-2. Characteristics

The characteristic values of TB3304J are shown in Table 5. A nitrogen atmosphere was used for measurement to match the curing environment when used with crystal oscillators. In TB3304J, the design of the filler has been greatly improved in order to allow for high precision minute-amount application. As a result, bond strength, which previously had to be reduced as a trade-off for achieving minute-amount application, has been successfully maintained while limiting the maximum particle size of the filler to 10 μ m or less. In addition, because it is necessary to hold the crystal piece firmly even when minute amounts are applied, it was designed to have a high structural viscosity ratio in order to improve shape retention after application.

The bond strength and minute-amount application of the example products mentioned above and TB3304J are mapped in Figure 3.

As shown in Table 2, low outgassing from cured products is required in the crystal device field. One characteristic of crystals is that they have a fundamental frequency that depends on mass. The sensitivity is extremely high, and the frequency fluctuates even with nanogram-order changes in mass. Because the crystal device has a closed structure, if outgas generated from the material cured with adhesive after assembly adheres to the crystal piece, the frequency will deviate from the design value. The mass of the attached substance and the change in frequency can be calculated using the Sauerbrey equation shown in Figure 4. With a 50 MHz crystal oscillator, this corresponds to a change of about 1 Hz per 1/100 nanogram.

* Bond strength: Measured with 2Ø gold-plated chip/gold-plated plate

Fig. 3 Relationship between bond Strength and Minute-Amount Application for Each Product

Test item	Unit	TB3304J	TB3303G (NEO)	Testing method	Remark(s)
Maximum filler particle diameter	μm	~10	~50	_	D100 value of laser diffraction
Viscosity	Pa•s	80	40	3TS-2F00-007	Shear velocity: 2.0 s ⁻¹
Structural viscosity ratio	_	5.2	2.6	3TS-2F10-004	Shear rate ratio: 2.0/20 s ⁻¹
Volume resistivity	×10⁻ ⁶ Ω•m	4.5	2.3	3TS-5100-002	
Chip bond strength	MPa	2.2	2.4	3TS-4180-002	2Ø gold-plated chip/gold-plated plate
Dynamic mechanical analysis (DMA) measurement	GPa	0.3	0.3	3TS-4730-001	DMA method E' at 25°C
Recommended nozzle inner diameter	μm	50	210	_	

Table 5 TB3304J Characteristic Values

Curing conditions

Curing equipment: Hot air drying oven

Curing atmosphere: Nitrogen

*Physical properties listed above are representative values.

Curing temperature: TB3304J: 60 min at 210°C and 30 min at 300°C

TB3303G (NEO): 60 min at 180°C and 30 min at 300°C

$$\Delta F = \frac{2 \times F_0^2}{A_v / \mu \times \rho} \times \Delta m$$

 $\begin{array}{l} \Delta F: \mbox{ Oscillation frequency change } \\ F_0: \mbox{ Crystal oscillator frequency } \\ A: \mbox{ Electrode area } \\ \mu: \mbox{ Shear stress of crystal (2.947 \times 10^{10} \mbox{ kg} \mbox{ ms}) } \\ \rho: \mbox{ Crystal density (2,648 \mbox{ kg/m}^3) } \\ \Delta m: \mbox{ Mass change } \end{array}$

Fig. 4 Sauerbrey Equation

Annealing treatment is generally performed in order to reduce outgas from the cured material as much as possible. The annealing temperature varies between crystal device manufacturers, but is higher than that for reflow soldering. For this reason, annealing treatment was performed for 30 minutes at 300°C after curing under standard curing conditions and the characteristic values were checked for any changes in order to ensure that TB3304J was able to withstand annealing treatment (Table 6). It was confirmed that the characteristic values do not change due to the annealing treatment. The amount of outgas from the cured product with and without annealing treatment was also measured. Equipment capable of simultaneous thermogravimetric and differential thermal analysis (TG-DTA) was used for measurement. The results of the TG-DTA measurements are shown in Figure 5. They show that annealing treatment reduces the amount of outgas from the cured material.

4-3. Application Performance

The following three elements can be considered as necessary for high precision minute-amount application.

- (1) Adhesive application performance
- (2) Applicator performance (condition setting)
- (3) Nozzle accuracy

High precision minute-amount application cannot be achieved if one of these elements is missing, and all must meet or exceed a certain standard. A further problem is when good results are not obtained when evaluating application performance. For example, when the nozzle clogs, it is necessary to determine whether this clogging is due to particles contained in the adhesive or due to surface roughness inside the needle of the nozzle. The same applies when the application accuracy is inconsistent. It is necessary to determine whether the problem is caused by the properties of the adhesive or the accuracy and setting of the applicator.

The following were used for the three elements when evaluating the application performance of TB3304J on this occasion.

Fig. 5 Outgassing Volume following Annealing Treatment

Test item	Unit	Without annealing treatment	With annealing treatment	Testing method	Remark(s)
Volume resistivity	×10⁻ ⁶ Ω•m	4.5	4.5	3TS-5100-002	
Chip bond strength	MPa	2.3	2.2	3TS-4180-002	2Ø gold-plated chip/gold- plated plate
Dynamic mechanical analysis (DMA) measurement	GPa	0.3	0.3	3TS-4730-001	DMA method E' at 25°C

Table 6 Change in Characteristic Values of TB3304J following Annealing Treatment

Curing conditions

Curing equipment: Hot air drying oven Curing atmosphere: Nitrogen *Physical properties listed above are representative values.

Curing temperature: Without annealing treatment: 60 min at 210°C

With annealing treatment: 60 min at 210°C and 30 min at 300°C

Application test conditions - three elements

Adhesive:	TB3304J
Aunosive.	1 D55045

Applicator	: Air-type dispenser, manufactured by PFA
	Corporation (hereafter referred to as "PFA")
Nozzle:	Manufactured by Tecdia Co.,Ltd. (hereafter
	referred to as "Tecdia")

Applicator selection, setting of conditions, and application tests were conducted with the cooperation of PFA. PFA applicators have a long track record in the crystal device market. Likewise, Tecdia nozzles have a proven track record in the market and the company provides nozzles designed for use with crystal devices. These test conditions were determined to be appropriate to accurately determine the application performance of TB3304J. The objectives set in this application test are shown below.

Application diameter:	Ø100 µm, Ø80 µm
Number of applications	: 2,000 shots
Application target:	1210PKG, manufactured by KYOCERA Corporation
Application precision:	$3\sigma = 20 \ \mu m \text{ or less}$

The application test was performed by changing the nozzle type according to the target application diameter. Table 7 shows the test conditions covered in this article, and Tables 8-1 to 8-3 show the test results. Application was performed on two 1210PKG gold-plated electrodes and Point 1 and Point 2 were measured.

The test with a target application diameter of $\emptyset 100 \ \mu m$ using a nozzle with an outer diameter of $\emptyset 100 \ \mu m$ achieved good results, with accuracy of $3\sigma = approximately 13 \ \mu m$ compared to a target accuracy of $3\sigma = 20 \ \mu m$ or less (Table 8-1). Similarly, Table 8-2 shows the results of the test using a nozzle with a smaller outer diameter of $\emptyset 80 \ \mu m$ with a target application diameter of $\emptyset 100 \ \mu m$. Application was even more accurate, with an accuracy of $3\sigma = approximately$ 11 μm . In the final test, the target application diameter was $\emptyset 80 \ \mu m$. This test assumes that the SMD crystal oscillator has a size of 0.8 mm \times 0.6 mm. In this test, a nozzle with an outer diameter of $\emptyset 80 \ \mu m$ was used, and a highly accurate result of $3\sigma = approximately 11 \ \mu m$ was obtained (Table 8-3).

In this application test, the adhesive shape (appearance) at the time of application is also confirmed along with

the application diameter. Application in a perfect circle is desirable, however, distortion will occur if the properties of the adhesive do not match the adhesive conditions. The appearance confirmation results for TB3304J are shown in Fig. 6.

Table 8-1 Application Test Results (Test 1)

Application diameter	Point 1	Point 2
Average (µm)	101.57	105.79
Minimum (µm)	89.65	94.00
Maximum (µm)	115.43	123.96
3σ (μm)	13.18	13.29

Application diameter	Point 1	Point 2
Average (µm)	108.26	106.02
Minimum (µm)	96.22	96.77
Maximum (µm)	117.89	113.95
3σ (μm)	11.24	8.74

Table 8-3 Application Test Results (Test 3)

Application diameter	Point 1	Point 2
Average (µm)	83.70	81.19
Minimum (µm)	68.63	70.28
Maximum (µm)	95.50	91.64
3σ (µm)	11.51	9.52

TB3304J (point 1)

TB3304J (point 2)

Gold-plated electrode

Fig. 6 Appearance of TB3304J during Application

Application test number	Target application diameter (µm)	Nozzle used	Nozzle inner diameter (µm)	Nozzle outer diameter (µm)
1	ф100	ARQ-S-0510-S	ф50	ф100
2	ф100	Customize Nozzle	ф50	ф80
3	ф80	Customize Nozzle	φ50	ф80

Table 7 Application Test Conditions and Nozzles Used

Confirmation of the appearance of the adhesive with a digital microscope after application showed that the circle was extremely well-formed, a result that confirms the previously-established accuracy of application.

Table 9 and Figures 7-1 and 2 show the results of comparative evaluation of TB3304J, TB3303Z, and TB3304D under the conditions of Test 1, with a target application diameter of \emptyset 100 μ m. Although TB3303Z, which has the best minute-amount application among the 3rd generation, was not able to meet the target, TB3304J demonstrated extremely high precision application.

The Tecdia nozzles used in this application test are shown in Table 10. None of these products are custom made and all can be obtained for general use.

5. Future Development Trends

As stated above, TB3304J was been designed specifically for application precision. From 2020 onward, the spread of 5G communication networks will diversify the type of terminals connected to networks, and it is expected that greater reliability will be required in the crystal device market. In order to meet these needs, we will continue to place emphasis on high reliability as we focus on the development of products with low levels of outgassing and improved stress relaxation (reduced elastic modulus).

Application diameter	TB3304J		TB3303Z		TB3304D	
	Point 1	Point 2	Point 1	Point 2	Point 1	Point 2
Average (µm)	101.57	105.79	98.65	100.38	93.67	97.65
Minimum (µm)	89.65	94.00	82.40	82.26	62.90	67.81
Maximum (µm)	115.43	123.96	120.04	119.78	118.53	118.45
3σ (μm)	13.18	13.29	20.42	19.03	25.39	22.06

Table 9 Application Test Results for Each Adhesive

Fig. 7-1 Application test results

Fig. 7-2 Application test results

Model	Diagram number	Inner diameter (µm)	Outer diameter (µm)
Customize Nozzle	TEC-4301054 #1	50	80
ARQ-S-0510-S	TEC-4300872 #2	50	100

Table 10 Information on Nozzles Used

Closing

This article describes a product that is suitable for use in the crystal device field, where products have undergone remarkable reductions in size and thickness. By adjusting the applicator conditions and nozzle used, high-precision application of TB3304J is possible at any diameter down to the minimum diameter of \emptyset 80 µm. This opens up the possibility of a wide range of future applications in crystal devices.

We at ThreeBond will continue to focus our efforts on product and technology development in line with market trends in order to ensure the contribution our products make to the industry.

<References>

- 1) Okano, Shotaro. Quartz Frequency Control Devices, Techno Co., Ltd. (1995)
- 2) Suganuma, Katsuaki. Introduction to Conductive Adhesives, Kagakujyoho Shuppan Co., Ltd. (2014)
- 3) ThreeBond. Application Note 97 (2013)
- 4) ThreeBond. Technical News 27 (1988)
- 5) ThreeBond. Technical News 52 (1999)
- 6) ThreeBond. Technical News 93 (2019)

ThreeBond Co., Ltd. R&D Headquarters 2nd Development Division, Functional Material Development Section Takashi Suzuki Takashi Nemoto

4-3-3 Minamiosawa, Hachioji, Tokyo 192-0398 Tel: +81-42-670-5333